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ABSTRACT 

Results of A. Feldzamen on semi-similarity of operators are proved here 
using matrix methods. The use of these methods yields simpler proofs, the 
formulations of the theorems assume a more transparent form. 

The purpose of  this note is to give shorter and more transparent proofs of  
results given in [3]. This will be done by using the methods developed in [4]. 
It should be mentioned that we assumed separability while Feldzamen does not. 

1. Preliminary notions. Let S be a normal operator, on a separable Hilbert 
space H, of uniform multiplicity n < ~ .  Thus H can be taken as direct sum of n 
equal spaces L2(F/, ]E,p), where f / i s  a Borel subset of  the plane, ~ the collection 
of Borel subsets off~, and # a finite positive measure. 

Also: 

See [3], [4], or [5]. 
The spectral measure E(.) of  S is given by 

( f1(2)~  X(~5)fl(2)~ 

E ( ' ) , f , ( i 2 ) /  = (Z(cS)f.(2) ,, 

where )C(fi) is the characteristic function of  6. 
Every operator A that commutes with S is given by a matrix of  bounded and 

measurable functions azj(2), where 

fi(2) f t(2) ~ . A(f,,(i)O ) = (a,j(2)) ( f . ( i ,  j 

See Theorem 2.1. of  [4]. 
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DEFINITION. The vectors y~ e H, i = 1 ... k, will be called dependent over 6 if 

y~(2) are dependent for almost every 2 ~ 6. 

LEMMA 1.1. The vectors yi are dependent over 6 i f  and only i f  there exist k 

measurable functions gi, and a sequence of Borel sets 6m increasing to 6, such 

that 

a. The functions gi are bounded on 6r~ and not all zero. 

b. I f  gi, m is the restriction of gi to 6m then 

k 

~, gi, m(S)Yi = O. 
i = 1  

Proof. It is clear that a. and b. imply dependence. Conversely, let yi(2) be 
dependent for 2 e 6. For  each 2 E 6 there exist constants g~(2) such that 

k 

g~(2)yi(2 ) = O. 
i = 1  

It is enough to show that one can choose gi to be measurable. Let us consider the 
matrix (yi,r(2)) where yi,r(2) is the rth component of yi(2). The set t) can be 
decomposed into finitely many disjoint measurable sets, on each a certain deter- 
minant of (yi,r(2)) is the largest non vanishing one. On each set gi(2) can be 
chosen by Cramer 's  Rule, and are thus measurable. 

COROLLARY. If k > n then the vectors y~ are dependent over every set 6. 

LEMMA 1.2. Let y~ 1 < i < n be independent over~.  Let x be any vector in H. 

There exist n measurable functions fi( 2) and a sequence of  Borel sets 6,, increasing 

to f~ such that 

n 

x = lim ]E f~,m(S)Y~, 
m - - , o o i = l  

where f i,,~ is the restriction o f f  i to 6 m and is bounded. The functions f ~ are uniquely  

defined. 

Proof. The vectors x(2), yi(2) are dependent by the previous Corollary. 
Thus x(;t) can be represented by a linear combination of yi(2). Since these vectors 

are independent the representation is unique. 
The same result could be proved for the case that Yi are independent over 

some set 6 = fL 

2. Canonical form for niipotents. In this section we will follow ['1] to bring 
a nilpotent matrix with measurable elements to canonical form. It  was proved in 

1-4] that if N is quasi nilpotent and commuting with S, then N(2)" = 0 a.e. 
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Let A(2; x) be an n by n matrix whose elements are polynomials in x with 
coefficients that are measurable functions of  4. Let f~k be the set on which the 
minimal order of the polynomials a,j(2; x) is equal to k. This is a measurable set. 

Let f~l = U ~ ' ~  where f~ ' J=  {2 lo rde r  of  aij(2;x ) = 1}. Again I)~ 'j is 
t , J  

measurable. An elementary transformation will bring aij to the upper left corner 
and by more elementary transformations A(2; x) can be brought to the form 

a(2) 0 ... 0 
0 
! A~(2; x) 
0 

where order of  a(2) is one and A1(2; x) has the same form as A(2; x). 
i , j  Let us split f~k to fl~ = {4 [ 2 ~ f~k and order of a,j(2; x) = k}. On f~ 'Jwe apply 

to A(2; x) an elementray transformation to bring aij to the left upper corner. 
Using the Euclidean Algorithm we see that there are two possibilities: 

1. By an elementary transformation (using measurable coefficients) we can 
bring A(2; x) on ~ '~ to the form 

i 
a(2 x) 0 ... 

A1(2; x) 

where A1(2; x) has the same form as A(2; x) and a(2; x) divides every element 
of  A1(2; x). 

2. A(2 ; x) can be transformed to a matrix whose minimal order is less than k, on 
f~. 

These considerations prove: 

LrMMA 2.1. There exists a matrix B(2;x)  such that both B(2;x)  and 
B(2;x)  -1 have polynomial elements with coefficients that are measurable 
functions of 2 and: 

B(2; x)a(2;  x)B(2; x ) - l =  diag{fl(2; x), f2(2; x), ..., f,,(2; x)}, 

where f i (2;x)  are polynomials in x with measurable coefficients and 

fi(2; x) l  f,+1(2; x). 

Let now A(2; x ) =  x I -  N(2) where N(2) represents the nilpotent operator 
N. Thenfi(2; x) = x i~a) (or 0), for they divide the minimal polynomial of  N(2) 
(Theorem 8, Chapter V, of  [1]). Thus i(2) is a measurable function of  2 and 
0 < i(2) < n. Let f~ be the union of  the disjoint sets f~,, where on ~ ,  i(2) is equal 
to a given fixed integer 1 < i < n. The sets f~, are measurable. By chapter V of [1], 



136 S.R. FOGUEL [September 

Theorem 6.10, the matrix diag(fi(2; x)) is equivalent, on f2~,to a canonical Jordan 
matrix diag(fl(2; x)) ~ x l  - Q~, where 

QGt "~- 

0 8 1  . . .  0 
: 

0 /~,-  1 

0 . . . 0  

and ei is either I or zero. Using Lemma 2.1 again one can find a matrix C(2; x), 
with the same properties as B(2; x) of Lemma 2.1, such that 

C(2; x) (xI - N(2)) C(2; x)- 1 = xI  - Q 

for 2 Ef~. 
Finally by chapterV, Theorem 5.10, of I-1.1: 

C,(Q; ~)N(,~)C,(Q,,; 2)-~ = Q,, 

when 2 e f~.  
To summarize: 

THEOREM 2.2. Let N be a nilpotent operator commuting with S and let 
N(2) be its matrix representation. Let Q~ be the Jordan forms of a nilpotent 
matrix. There exists a matrix D(2) of measurable functions such that D-1 (2) 
exists, and measurable sets 12~ whose union is f~ such that 

D(A)N(2)D- 1(2) = Q~ 

For the matrix Q, there exist vectors Ya, ..., Y, such that 

j 1 -1  O J,.-1 
Yl, Q~Yl .. . .  ,Q= yx, ...,yr, Q~yr, . . . , ~  Yr 

are independent, j 1 + ... + j ,  = n, and Q~yi = O. 
Let xi(2) = D- 1(2)y t, and let f~,m c 11~ be such that xi(2) is bounded on f~,m 

and f~,,m increases to f~. Then on f~,m (on E(f~,,~)H) 

N1, Nx1, ..., Njt - l x l ,  . , .  ' Xr, N Xr, . . . ,  N j r -  l x r  

are independent, and NJ'x, = O. 
This shows that the sets f~  do not depend on the representation of H as direct 

sum of L2 spaces (Spectral Multiplicity Theorem). 
The sets f~  will be called the canonical sets of S + N. 
3. Semi similarity. Let T =  S + N and T1 = $1 + N1 be two spectral 

operators (see 121) and let S have uniform multiplicity n (equivalenty S is similar 
to a normal operator with uniform multiplicity). In [31 the notion of semi semilarity 

is defined by: 
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DEFINITION. T and T~ are semi similar if there is a sequence of  Borel sets 6m 
increasing to ~ such that, if E(.) and E~(.) are the spectral measures of  Tand T 1, 
there are bounded maps Lm, from EI(6")H to E(6m)H, with 

Lmr'L-m 1 = r l "  . 

where Tm(Tlm ) is the restriction of  T(T~) to E(6") (E1(6")). 
It was shown in [3], Theorem 27, that if Tand T1 are semi similar, then S and S~ 

are similar. If  Tis semi similar to Tt and T =  KT2K - 1for a bounded operator  K 

where T2 is again spectral then 

L ' K T 2 K -  1L-~l= TI" 

or T2 is semi similar to T 1. Also by the remark following Theorem 2.2 the operators 
T2 and T have the same canonical sets. 

THEOREM 3.1. The spectral operators T and T I are semi similar if  and 
only if  S and S t ".are similar and T and T 1 have the same canonical 

sets. 

Proof. Without loss of  generality we may assume that S = S~. If  S + N is 

semi similar to S + N~ then 

L ' N ' L ~  1= Nlm, 

where N m and N I "  . a r e  the restrictions of  N and N~ to E(6")H. But then 

Lm(a)N'(a)Lfl(a) = N~'(~),  

which proves that N(2) and NI(A) have the same canonical sets. Conversely, if N 
and N1 have the same canonical sets, then on f~  

N = D-I(A)Q~D(2), N 1 = D'~l(2)Q~Dl(2); 

hence 

N 1 = D-~ ~(2)D(2)N(2)D-.'(2)Dl(2 ). 

Define 6., so that D-I(2)Dt(2) and D~-I(2)D(2) be bounded on 6", and 

L ' (2)  = {D~-I(,~)D(~) ] restricted to E(6m)H}. 

COROLLARY. Semi similarity is a transitive relation. 
This is Theorem 26 of  [3]. Theorem 3.1 is essentially equivalent to Theorem 29, 

and 30 of  [3]. 
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